Unit 2 The atmosphere

The earth

The earth surface can be divided into three parts, the **crust**, the **ocean** and the **atmosphere**. Many resources can be obtained from these three regions.

Tick the parts of the earth where the following resources can be obtained.			
Resources	Crust	Ocean	Atmosphere
Nitrogen, oxygen and other gases			✓
Sodium chloride and sodium metal		\checkmark	
Coal, petroleum and natural gas	✓		
Iron and aluminium metals	\checkmark		
Building materials such as limestone	\checkmark		

Tick the parts of the earth where the following resources can be obtained.

Classification of matter

Matter is anything which has a mass and occupies space. They can be solids, liquids or gases. They can be naturally occurring (such as rocks, air and water) or man-made (such as concrete,

glass and plastics). Matter can be classified into **pure substances** and **mixtures**.

A single substance that has nothing else mixed with it is a pure substance.

A mixture is made up of more than one substance which has not been chemically joined together.

Elements and compounds

Pure substances can be further classified into elements and compounds.

Elements are substances which cannot be broken down into anything simpler by chemical methods.

Compounds are substances made up of two or more elements chemically joined together.

For example, water is a compound. It can be broken down into **hydrogen** and **oxygen** by passing electricity through it. Similarly, common salt can be broken down into **sodium** and **chlorine** in the factory by passing electricity through molten salt.

There are about 112 elements known. Over 80% of them can be found on earth in the nature. Others are artificially made by scientists. You can refer to the Periodic Table in the Appendix for deciding whether a pure substance is an element or not. The billions of compounds found on earth are actually made of these 112 different elements chemically joined together.

	Mixture	Compound
1. Composition by mass	Components in a mixture can	The elements in a compound
	exist in any proportion.	must exist in a fixed ratio.
2. Energy change during	No or little energy change	Energy is usually released or
formation	when a mixture is formed.	taken in forming a compound.
3. General properties	Properties are similar to the	Properties are very different
	substances making up the	from the elements in it.
	mixture.	
4. Melting point and boiling	It does not have a fixed	It has a sharp melting and
point	melting or boiling point.	boiling point.
5. Separating the constituents	The constituents can be	The constituent elements can
	separated by simple physical	only be separated by chemical
	methods.	methods.

Differences between a mixture and a compound

Classify the following substances as elements, compounds or mixtures.

Iron	Nitrogen	Carbon dioxide	Ice	Concrete	Tea
Element	Element	Compound	Compound	Mixture	Mixture

The atmosphere

The atmosphere is the layer of gases hundreds of kilometers thick that surrounds the earth. It can be divided into four layers. We live in troposphere, the layer that is the closet to the earth. This layer consists of a mixture of gases called air.

Air contains nitrogen (78%), oxygen (21%) and small amounts of carbon dioxide, water vapour and a group of gases called noble gases. Noble gases in the air (about 1% in the air) include argon, helium, neon, krypton and xenon. (about 1% in the air)

Physical and chemical properties

Physical properties of a substance are properties that can be measured **without changing the chemical composition** of the substance. Examples include the colour, mass, melting point and boiling point etc.

Chemical properties of a substance are properties related to the ability of it to **form new substances**. Examples include whether a substance can be burnt in air and whether a compound would decompose on passing electricity through it.

Physical and chemical changes

During a **physical change**, **no new substance** is formed. During a **chemical change**, **new substance**(s) is/are produced.

<u>Can you classify the following as physical of chemical changes:</u>			
Melting of ice	Physica / Chemical change		
Boiling of water	Physica / Chemical change		
Freezing of water	Physica / Chemical change		
Sublimation of dry ice (solid carbon dioxide)	Physica / Chemical change		
Condensation of water vapour	Physica / Chemical change		
Dissolving sugar in water	Physica / Chemical change		
Burning of a match	Physical / Chemical change		
Digestion of food	Physical / Chemical change		

Can you classify the following as physical or chemical changes?

The atmosphere P.2/4

Separation of the components in a mixture and a compound

The methods to **separate** the components of a **mixture** can be called **physical methods**. The choice of physical methods actually depends on the physical state of the mixture. The methods to **separate** the elements in a **compound** are called **chemical methods**. They will be dealt with later.

Separating process	Separation method(s)	Example
Separating an insoluble solid	Decantation	Separating sand from the sea
from a liquid	Filtration	
Separating a dissolved solid	Evaporation	Separating common salt from
(solute) from a solution	Crystallization	sea water
Separating the solvent from a	Distillation	Separating pure water from
solution of a solid solute and a		sea water
liquid solvent		
Separating a mixture of two	Fractional distillation	Separating oxygen and
miscible liquids		nitrogen from liquid air
Separating a mixture of two	Use of separating funnel	Separating a mixture of oil
immiscible liquids		and water

Some common physical methods used for separating mixtures

Separating oxygen and nitrogen from the air

The method used is fractional distillation of liquid air which works on the difference in the boiling points of the different components in air.

The process is divided into three stages.

Stage A Purification (Steps1 – 2)

Dust, water vapour and carbon dioxide in the air are removed.

Stage B Liquefaction of air (Steps 3 – 4)

The purified air is compressed at a very high pressure and is then passed through cooling coils. It is passed into an expansion chamber. The rapid expansion will cool down the air. After repeated cycles of compression and expansion, the temperature will fall to -200 $^{\circ}$ C. The air then becomes a liquid.

Stage C Fractional distillation of air (Step 5)

The liquid is pumped into a fractionating column. The temperature is slowly raised. Nitrogen boils at -196 $^{\circ}$ C, it passes out at the top of column. Oxygen boils at -183 $^{\circ}$ C and is collected at the lower part of the column. Refer to the diagram below.

Tests for the major components in air

Oxygen is a very reactive element and a simple test for oxygen is that it relights a glowing splint.

Nitrogen is chemically very inert and there is no simple chemical test for it.